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Time Series Analysis

Modeling Bivariate Threshold Autoregressive
Processes in the Presence ofMissing Data

FABIO H. NIETO

National University of Colombia, Bogotá D.C., Colombia

In this article, a methodology for analyzing bivariate time series with missing data
is presented. It is assumed that there is a dynamical nonlinear relationship between
the two time series, which is described by a threshold autoregressive (TAR) model.
The time series analysis consists in the identification and estimation of the model
in the presence of missing data. As a main result, the model parameters and the
missing observations are estimated jointly. The TAR model analysis is accomplished
by means of Markov Chain Monte Carlo (MCMC) and Bayesian approaches.

Keywords Missing data; Nonlinear time series; TAR models.

1. Introduction

Sometimes, one is faced with the problem of analyzing multivariate time series with
missing data. The missing observations may belong to one or more of the time
series. Here the missing data case being considered is that in which the variable(s)
of interest had realizations in the sample period considered but were not physically
observed. This point differs from those in which the observations are by nature
unequally spaced or there is a mechanism that produces the missing data at random.
A real example consists of the data basis of meteorological/hydrological oficial
agencies, where, in some countries, is very common that some of their variables
(diary rainfall, diary riverflow, etc.) have many missing observations. Here, it is clear
that the variables had realizations but, for some reason, those were not measured
or registered. This becomes a crucial practical problem when the climatological
information is intended to be related to other non climatological variables, because
missing data in the climatological variables can induce missing observations in
the other variables and potential statistical models could not be fitted. Then, a
procedure for estimating missing data in an optimal way is necessary.
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It is well known that, usually, the time series analysis consists of three basic
steps: (1) identification of a statistical model in the presence of missing data,
(2) estimation of the unknown model parameters and, when needed, of the missing
data, and (3) forecasting. In the case of univariate nonlinear time series models,
Tong (1990), Tong and Yeung (1991a,b), and Brockwell (1994) have worked on
the problem, but only partially. Their works have the main characteristic that the
underlying model is assumed to be known but the missing data estimation is not
an issue.

For analyzing nonlinear multivariate time series with missing data, no results
are yet available to the best knowledge of the author. For the case of consecutive or
complete time series, Tong’s (1990) TARSO models or Tsay’s (1998) multivariate
SETAR (MSETAR) models are adequate tools for their analysis. A related
specification to the TARSO and MSETAR models is the so-called TAR model
where one only has a variable as the input and one as the output in the underlying
dynamical system. The input variable is the threshold variable and depending on
the location of its values in its sample space, one has different types of responses
of the output variable. This is something like a (nonlinear) transfer function model
and its analysis, taking into account missing data, is the main goal of this article.
For example, in the case of the real problem quoted above, a reasonable approach
is to consider rainfall as an input variable and river flow as an output.

Markov Chain Monte Carlo (MCMC) methods and the Bayesian approach are
used to design a methodology for analyzing the nonlinear bivariate model described
above. Note that the forecasting part of the problem will not be considered in this
article. The article is organized as follows. In Sec. 2, the TAR model specification
and its main properties are presented, emphasizing on the likelihood function
characteristics. In Sec. 3, the results about the estimation of both the model
unknown parameters and the missing data are included and some highlights for
model checking are given when there are missing observations. Section 4 presents
the findings for model identification when the time series are complete; then, a
practical strategy is sketched for the model identification in the presence of missing
data. In Sec. 5, a real-life application is shown where the variables involved are the
rainfall and a river flow in a certain Colombian geographical region. Finally, the
last section concludes the article.

2. Model Specification

Let �Xt� and �Zt� be stochastic processes such that the first one is the output and the
second is the input of a dynamical system described by the equation (TAR model),

Xt = a
�j�
0 +

kj∑
i=1

a
�j�
i Xt−i + h�j��t (1)

if Zt belongs to the real interval Rj = �rj−1� rj� for some j (j = 1� � � � � l), where
r0 = −� and rl = �. The real numbers rj (j = 1� � � � � l− 1) are called the threshold
values of the process �Zt� and they define l regimes for the process �Zt�. This
equation means that the dynamic response of the variable X depends on the location
of the values of variable Z in its sample space.

Additionally, ��t� is a Gaussian zero-mean white noise process with variance
1 that is mutually independent of �Zt�. The coefficients a

�j�
i and h�j� (j = 1� � � � � l;
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i = 0� 1� � � � � kj) are real numbers and the non negative integer numbers k1� � � � � kl
denote, respectively, the autoregressive orders of �Xt� in each regime. The symbol
TAR�l	 k1� � � � � kl� is used to denote this model and called l, r1� � � � � rl−1, and
k1� � � � � kl the model structural parameters.

These kinds of models were introduced by Tong (1978) and Tong and Lim
(1980), specifically in the case where the threshold variable is the lagged variable
Zt = Xt−d, for some positive integer d. In this case, the model is known as the self-
exciting TAR (SETAR) model and, at present, there is a lot of literature about the
analysis of these models, under the frequent assumption that we know the number
l of regimes and the autoregressive orders k1� � � � � kl.

In this article, it is assumed that �Zt� is exogenous in the sense that there is no
feedback of �Xt� towards it and that the stochastic behavior of �Zt� is described by a
homogeneous pth order Markov chain with initial distribution F1�z� �z� and kernel
distribution F�zt�zt−1� � � � � zt−p� �z�, where �z is a parameter vector in an appropriate
numerical space. Furthermore, it is assumed that these distributions have densities in
the Lebesgue-measure sense. Let f1�z� �z� and f�zt�zt−1� � � � � zt−p� �z� be, respectively,
the initial and kernel density functions of the distributions above. Of course, all
the properties of the chain �Zt� can be deduced from the multivariate homegeneous
first-order Markov chain �Zt� where Zt = �Zt� � � � � Zt−p+1�

′ for all t > p− 1. For
example, if �Zt� has a stationary distribution, �Zt� also has a stationary one and if
K�·� ·� and Kp�·� ·� denote, respectively, the univariate and the multivariate transition
kernels, then Kp�zt� A� = K�zt� Ap−1� where zt = �zt� � � � � zt−p+1� ∈ �p and Ap−1 =
�y ∈ � 
 �y� zt−1� � � � � zt−p+1� ∈ A�, with � the state space of the chain �Zt�, �

p its
p-dimensional cartesian product, and A an event in the �-algebra for �p. In what
follows, it is assumed that the p-dimensional Markov chain �Zt� has an invariant or
stationary distribution and that fp�·� and fp�·�·� denote, respectively, its stationary
and transition kernel densities. It is remarked here that a stationary distribution
indicates that sample paths from �Zt� are long-term stable.

The TAR model has, additionally, the following properties or characteristics.

(1) It describes a nonlinear relationship between the variables X and Z, which by no
means one can assure a priori that it is piece-wise linear as does happen with a
SETAR model. In terms of the associated stochastic processes, what one has is
a dynamical system without feedback with input process �Zt� and output �Xt�.
The piece-wise linearity is between Xt and the set of variables Xt−1� � � � � Xt−k and
Zt, where k = max�k1� � � � � kl�.

(2) With this kind of model, one can also explain certain types of heteroscedasticity
in �Xt� because a typical path from it may show bursts of large values. In this
way, the TAR model is an alternative to known models for handling this kind
of stylized facts, as is the case of the GARCH models.

(3) It is an alternative to the regime-switching model of Hamilton (1994), in the
sense that one can have more than two regimes in the underlying hidden
Markov chain, which is represented here for the process �Zt�, or that it can has
a general state space (Meyn and Tweedie, 1993).

In order to facilitate the inference part of the TAR model analysis, it will be
transformed it into a state space model with regime switching. To do that, let �t =
�Xt� Xt−1� � � � � Xt−k+1�

′ be the state vector, t = ��t� 0� � � � � 0�
′ be the system noise,

and �Jt� be a sequence of indicator variables such that Jt = j if and only if Zt ∈ Bj
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for some j (j = 1� � � � � l). Also, let H = �1� 0� � � � � 0�′ and for each j (j = 1� � � � � l),
let Cj = �a

�j�
0 � 0� � � � � 0�′,

Rj =
(
h�j� 0′

0 0

)
�

and

Aj =
(
a
�j�
1 a

�j�
2 · · · a

�j�
k−1 � a

�j�
k

Ik−1 � 0

)
�

where a
�j�
i = 0 for i > kj and Ik−1 denotes the identity matrix of order k− 1. Then,

the state space form for the TAR�l	 k1� � � � � kl� model becomes

Xt = H�t (2)

as the observation equation, and

�t = CJt
+ AJt

�t−1 + RJt
t (3)

as the system or state equation, where it is understood that CJt
= Cj , AJt

= Aj , and
RJt

= Rj if at time t, Jt = j. Note that one can consider the matrices CJt
, AJt

, and RJt
as stochastic matrices with a finite range of possible values. This kind of nonlinear
state space models, where additional to the observation and system equations there
is an underlying indicator process that defines the structure of these equations and
the probability distributions of the error terms, have been studied in the literature
by, among others, Shumway and Stoffer (1991), Carter and Kohn (1994, 1996),
and Kim and Nelson (1999). Nowadays, they are termed state space models with
regime switching and can be analyzed efficiently by means of MCMC simulation
procedures. Other nonlinear and non Gaussian state space models, which do not
take into account the presence of a parallel indicator process as described above,
have also been studied by means of MCMC methods as is the case of, among others,
Carlin et al. (1992) and Geweke and Tanizaki (1999), with the latter paper being a
generalization of the first one.

A main tool for the TAR model analysis to be developed below is its likelihood
function; consequently, we proceed now to characterize and understand it. Let y =
�x� z� with x and z being, respectively, the observed data vectors for processes �Xt�
and �Zt� in the consecutive sample period from t = 1 up to t = T . Conditional on
l, r1� � � � � rl−1, k1� � � � � kl, and xk = �x1� � � � � xk�, this function is given by the joint
density f�y��x� �z�, where �x denotes the vector of all the non structural parameters
a’s and h’s. Now,

f�y��x� �z� = f�x�z� �x� �z�f�z��x� �z�� (4)

where

f�z��x� �z� = f�zp��z�f�zp+1�zp	 �z� · · · f�zT �zT−1	 �z� (5)

and

f�x�z� �x� �z� = f�xk+1�xk� z� �x� �z� · · · f�xT �xT−1� · · · � x1	 z� �x� �z��
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Since the white noise process ��t� is Gaussian, one gets that

f�x�z� �x� �z� = �2��−�T−k�/2

[
T∏

t=k+1

�h�jt��−1

]
exp

(
− 1

2

T∑
t=k+1

e2t

)
� (6)

where

et =
xt − a

�jt�
0 −∑kjt

i=1 a
�jt�
i xt−i

h�jt�
�

and the sequence �jt� is the observed time series for the stochastic process �Jt�.
It is important to note here that, given the number of regimes l and the data

x and z, the values of the likelihood function change if one changes the thresholds
r1� � � � � rl−1, in turn �jt�, or the autoregressive orders k1� � � � � kl. This points out
the clear dependence of the likelihood function on the thresholds of �Zt� and the
autoregressive orders of �Xt�. Note that the marginal likelihood function for data
z is determined only by the initial and kernel densities of the assumed Markov
chain and this probabilistic structure has to be developed on a case-by-case basis. In
expression (5), it is assumed that there is no relation between the parameters �x and
�z, in the sense that the probability mechanism generating z does not depend on �x.
Additionally, it is assumed in what follows that the marginal likelihood function for
x, i.e., f�x�z� �x� �z�, does not depend on �z.

3. Model Estimation

Because estimation of missing data is a main concern in this article, as was
motivated in the Introduction, I assume now that there are missing observations in
the two time series, in such a way that the observed data are located at the unequally
spaced time points t1� � � � � tN , with 1 ≤ t1 ≤ · · · ≤ tN ≤ T , for �Xt� and at s1� � � � � sM ,
1 ≤ s1 ≤ · · · ≤ sM ≤ T , for �Zt�. Here, the statistical problem is to estimate both the
model non structural parameters and the missing observations. Of course, in other
missing data situations, it can be unnecessary to estimate the missing observations,
only the fixed unknown model parameters. In this case, some kind of adjustment
would be necessary to do to the results in Subsec. 3.2 and the work developed in
Subsec. 3.1 below must be skipped.

For the time being, it is assumed that the structural parameters l, r1� � � � � rl−1,
and k1� � � � � kl are known, that is to say, one has identified the model. From a
methodological point of view, we consider initially the problem of estimating the
missing data assuming that the model non structural parameters are also known;
then, we will work on the joint estimation of both the unknown parameters and the
missing data.

3.1. Missing Data Estimation

One can modify the state space model of Eqs. (2)–(3) by taking into account this
unequally spaced time series, defining the new observation equation

Xt = Ht�t + �tW� (7)

where Ht = H and �t = 0 if t ∈ �t1� � � � � tN � and Ht = 0′ and �t = 1 otherwise; W
is a discrete random variable with Pr�W = w0� = 1 for some w0 in the support of
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the variable X. This idea of including artificial data at the missing observation time
points has been used in handling linear time series with missing observations (see,
e.g., Brockwell and Davis, 1991 and Peña and Maravall, 1991) and, as can be seen,
this has the technical advantage of using the equally spaced Kalman filter. Since
the matrix Ht for the artificial data is the zero matrix, there is no influence of these
observations on the Kalman filter recursions and consequently on the missing data
estimates. That idea is also useful for putting reasonable initial estimates of the
missing data as would be required in this section.

As noted by Carter and Kohn (1994, 1996) and Kim and Nelson (1999), the
model given by Eqs. (7) and (3) can be studied by means of the Gibbs sampler;
thus, one can do inferences about unobserved states or indicator variables. For
this reason, we will follow the Gibbs sampling approach to address this missing
data estimation problem. Strictly, what one needs is to draw from the joint
conditional density p�xm� zm�xo� zo�, where xm and zm denote the vectors of missing
data in the time series �xt� and �zt�, respectively, and xo and zo denote the vectors
of corresponding observed data. Then, the idea is to compute the conditional
expectation of the missing data variables given the observed ones, using draws of the
above conditional density. This is the optimal estimate of the missing observations
in the sense of the minimum mean square error (MMSE) criterion.

In order to accomplish the previous described goal, we briefly recall Carter
and Kohn’s (1994) approach. They gave a way for computing the so-called full
conditional densities p���j� x� and p�j��� x� for generating samples from the joint
posterior density p��� j�x�, where � = ��1� � � � � �T � is the so-called total state vector
and j = �j1� � � � � jT � is the total vector of indicators (discrete variables with finite
sample space). Their main results establish that

p���j� x� = p��T �j� x�
T−1∏
t=1

p��t��t+1� j� xt� (8)

with xt = �x1� � � � � xt�, and that

p�j��� x� = p�jT ��� x�
T−1∏
t=1

p�jt�jt+1� xt� �t� (9)

with �t = ��1� � � � � �t�. Thus, to generate � from p���j� x�, one first generates �T from
p��T �j� x� and then, for t = T − 1� � � � � 1, one generates �t from p��t��t+1� xt� j�. The
same idea applies for generating from p�j��� x�. In the first case, extensive use of
Kalman-filter-based algorithms is carried out, while in the second a discrete filter is
considered, which depends strongly on the distribution of the process �Jt� (a first-
order Markov chain). We note that

p�jt�jt+1� xt� �t� = Pr�Jt = jt�Jt+1 = jt+1� xt� �t�

for each jt = 1� � � � � l, where l is the number of states of the chain. The same remark
applies for understanding the meaning of the functions p�j��� x� and p�jT ��� x�.

A major point emerges here in the context of TAR models. The resulting
indicator process �Jt� is a transformation of the input process �Zt�. While in
the state-space regime-switching models literature the interest is on the indicator
process itself, the concern here is instead on the process �Zt�, which is a Markov
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chain with general state space. Notice that missing observations in this process
cause missing ones in the indicator process and these values can be estimated
using directly expressions (8) and (9) (Carter and Kohn’s 1994, 1996, algorithms).
However, the crucial problem here is how to obtain estimates of the missing values
in �Zt� given estimates of the corresponding missing ones in �Jt�. In order to avoid
this route, we shall modify Carter and Kohn’s approach by directly taking into
account the process �Zt�. That is to say, we shall concentrate the attention on
the joint conditional density p��� z�x�, because the required marginal joint density
p�xm� zm�xo� zo� can be obtained from it, where here x is constituted by xo, zo, and
the artificial data inserted to complete the time series. The idea is that at time
t, where there is not observation for Xt, one considers a draw of �t and takes
up its first component as an estimate of xt (small letters denote data and capital
ones denote random variables). The same idea applies for obtaining draws for the
components of zm.

It is easy to see that expressions (8) and (9) are still valid with z in place of j.
Indeed, the modified expression (8) is obtained following Carter and Kohn’s (1994)
paper, line by line, while the modified expression (9) is given in Proposition 3.1
below.

Proposition 3.1. Assume that the process �Xt� obeys the state-space regime-switching
model given by

Xt = HJt
�t + et�

�t = AJt
�t−1 + ut�

where Jt = j if Zt ∈ Bj (j = 1� � � � � l), with the set family �Bj�j = 1� � � � � l� determining
a partition of the real line as indicated in Sec. 2; the noise processes �et� and �ut�

are each one serially uncorrelated and the distribution of et and ut may depend on Zt

through the indicator variable Jt, t = 1� 2� � � � ; and conditional on �Zt� the remaining
standard assumptions on state space models hold (Harvey, 1989). Additionally, assume
that (i) Zt is independent of es and us for all s > t, and (ii) xt and �t are independent
of Zs for all s > t. Then, the full conditional density p�z��� x� is given by

p�z��� x� = p�zT ��� x�
T−p∏
t=1

p�zt�zt+p� xt� �t��

where, in general, zt = �zt−p+1� � � � � zt�.

Proof. One knows that

p�z��� x� = p�zT ��� x�p�zT−p�zT−p+1� � � � � zT � �� x� � � � p�z1�z2� � � � � zT � �� x��

Now, using the state-space model equations and assumption (i) one obtains, for all
t = T − p� � � � � 1, that

p�zt�zt+1� � � � � zT � �� x� = p�zt�zt+1� � � � � zT � �t� xt��
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and, using assumption (ii) and that the process �Zt� is a homogeneous pth-order
Markov chain, one has that

p�zt�zt+1� � � � � zT � �t� xt� = p�zt�zt+p� �t� xt��

This completes the proof.

As outlined previously, the importance of Proposition 3.1 is in that it signals
how to draw random samples from p�z�x� �� via the conditional marginal densities
p�zT �x� �� and p�zt�zt+p� xt� �t� (t = T − p� � � � � 1). The key part now is how to draw
samples from these conditional densities and Proposition 3.2 below shows how to
do that.

Proposition 3.2. With the notation and assumptions in Proposition 3.1, one has that

p�zT ��� x� ∝
T∏

j=T−p+1

p��j�zT � �j−1�fp�zT �

and that for t = T − p� � � � � 1,

p�zt�zt+p� �t� xt� ∝ p��t�zt+p−1� �t−1�fp�zt+p�zt+p−1�fp�zt+p−1��

Proof. Initially, we note that

p�zT ��� x� ∝ p�xT−p+1� � � � � xT ��p� zT �p��p��T−p� zT �fp�zT ��

where �p = ��T−p+1� � � � � �T �, and that

p��p��T−p� zT � =
T∏

j=T−p+1

p��j�zT � �j−1��

For each t = T − p+ 1� � � � � 1, if Xt is observed,

p�zt+p−1��t� xt� ∝ p�zt+p−1� xt� �t��t−1� xt−1�

= p�xt��t� zt+p−1�p��t�zt+p−1� �t−1�fp�zt+p−1��

and if Xt is not observed,

p�zt+p−1��t� xt� = p�zt+p−1��t� xt−1�

∝ p�zt+p−1� �t��t−1� xt−1�

= p��t��t−1� zt+p−1�fp�zt+p−1��

Now, for t = T − p� � � � � 1,

p�zt�zt+p� �t� xt� ∝ p�zt+p�zt+p−1� �t� xt�p�zt+p−1��t� xt�

= fp�zt+p�zt+p−1�p�zt+p−1��t� xt��
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Finally, if in the observation equation of the state-space regime-switching model
there is no error term, i.e., Pr�et = 0� = 1 for all t, as is the case of TAR processes,
one has that conditional on zt+p−1 and �t, the distribution of Xt is degenerate, that
is p�xt��t� zt+p−1� = 1 (t = T − p+ 1� � � � � 1), and also p�xT−p+1� � � � � xT ��p� zT � = 1.
This ends the proof.

Jointly, Propositions 3.1 and 3.2 generalize Carter and Kohn’s (1994) result
given by expression (9), in the sense that the underlying Markov chain is of order
p ≥ 1 and with general state space. Of course, they are also extensions of the
classical smoothing algorithms.

The results given in the above Propositions suggest that one can use accept
reject or Metropolis-Hastings algorithms (Chib and Greenberg, 1995; Robert and
Casella, 1999) for drawing from p�zT �x� �� and p�zt�zt+p� xt� �t� (t = T − p� � � � � 1),
taking fp�·� as a reasonable proposal density. It is important to note here that if at
time t, Zt was observed, one does not need to generate a simulated value for this
variable. Consequently, in the backward recursive procedure described above for
generating z one can skip the time point t.

To draw from p���z� x�, one must take into account the following points. First,
for running the conditional Kalman filter, we propose to take as initial conditions
�0 = m1 and Var��0� = s2Ik, where m denotes the median of the time series �xt�,
s is the median of the absolute deviations with respect to this data median, 1 is a
column of ones, and Ik is the identity matrix of order k. Additionally, for completing
the x- and z-data in a preliminary way and so to run the first iteration of the
Gibbs sampler, we propose to take the medians of the corresponding observed
data. Using the median is recommended because this is a non parametric robust
estimate of the central tendency of variable X. The problem at hand may suggest
another reasonable initial estimates. As was noted previously, these initial missing
data estimates have no impact on the final estimates. Second, as can be seen in
Proposition 3.2, one needs to compute the distribution of �t��t−1� zt+p−1. For the
state space model given by Eqs. (7) and (3), this is a singular multivariate normal
distribution (Anderson, 1984) with mean Cjt

+ Ajt
�t−1 and variance matrix Rjt

�R′
jt
,

where

� =
(
1 0′

0 0

)
�

Consequently, the density p��t��t−1� zt+p−1� collapses to ��et�/Rjt
�1� 1�, with ��·�

denoting the standard normal density, et is the residual in (6), which has the
equivalent definition given by

et = �xt − Cjt
�1�− Ajt�1•�t−1�/Rjt

�1� 1��

with Cjt
�1� the first component of Cjt

, Rjt
�1� 1� the entry �1� 1� of matrix Rjt

, and
Ajt�1• the first row of matrix Ajt

.
Knowing the full conditional densities p���z� x� and p�z��� x� and the way for

drawing from them, one obtains a sample of size G from p��� z�x�, which is denoted
for future reference as ���1�� z�1��� � � � � ���G�� z�G��. Note that the set ���1�� � � � � ��G��
can be considered as a sample of size G from the marginal posterior density p���x�
and the set �z�1�� � � � � z�G�� as one of p�z�x�. Successively, one can obtain samples
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for the required missing-data marginal posterior densities, extracting the values
that correspond to the missing data components. The main goal is to compute the
conditional means and variances of the distributions for the missing data variables.
Additionally, with the generated samples one can obtain 100�1− c�% credible
intervals for the missing observations, for some c, 0 < c < 1, where such intervals
are given by �qc/2� q1−c/2�, with qc the cth sample quantile.

One important point is mentioned here. For t ∈ �t1� � � � � tN �, the drawing of �t
always gives xt in its first component, which is the actually observed data. This
fact can be shown noting that the corresponding MMSE updating matrix in the
backward recursive procedure is the zero matrix. This means, in practice, that it
is not necessary to draw from the conditional distribution for Xt or, equivalently,
that one can skip this step in the aforementioned recursive algorithm. This
result is imitated in the procedure for drawing from the conditional distributions
p�zt�zt+p� xt� �t� when at time t one has an observation for Zt.

In summary, the procedure for estimating missing observations in time
series that obey a TAR model, when the model parameters are known, can be
implemented as follows.

Step 1. Complete the x- and z-time series with initial values for the missing data.
Step 2. Based on these two completed time series, run the Gibbs sampler as

indicated in Propositions 3.1 and 3.2 for generating random draws from the
missing data posterior distributions.

Step 3. With those samples, compute the means, variances, and credible intervals at
the level desired. The sample means are the estimates of the missing data
and the sample variances are their MMSEs.

3.2. Parameters Estimation

The results obtained in the previous subsection are extended now to deal with both
the parameters and missing data estimation, which is a real practical problem. The
methodology is also based on the Gibbs sampler for state space models with regime
switching. As will be noted, the estimation of the missing observations is an intrinsic
step as happens with the classical Expectation Maximization (EM) algorithm.

Let � be the vector of total unknown parameters in the TAR model, including
those for the threshold process �Zt�. Assuming that � is known, the so-called
full conditional densities p���z� x� �0� �� and p�z��� x� �0� �� were obtained in the
previous subsection, in order to generate samples from the joint posterior density
p��� z�x� �� �0�, where �0 is the initial state vector. From now on, and unless the
contrary is indicated, we omit writing �0 in the conditioning sets. The statistical
problem here is to estimate both � and the missing observations xm and zm;
consequently, our specific interest is in obtaining the joint conditional density
p��� xm� zm�xo� zo�. With this end, we consider again the state space form of the TAR
model and concentrate in obtaining the joint conditional density p��� �� z�x�, which
p��� xm� zm�xo� zo� can be obtained from.

Usually, the full conditional density p����� y� is obtained according to the
particular case at hand. In the case of TAR models, we must compute the full
conditional densities for the unknown model parameters a

�j�
i and h�j� (j = 1� � � � � l;

i = 0� 1� � � � � kj) and those of the distribution of �Zt�. With this goal, let �j =
�a

�j�
0 � a

�j�
1 � � � � � a

�j�
kj
�′ (j = 1� � � � � l) and h = �h�1�� � � � � h�l��′. Then �x = ��1� � � � � �l� h�
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and � = ��x� �z�. Notice that if �Zt� is a discrete Markov chain, the case reduces to
that of Carter and Kohn (1994).

Instead of considering the conditional density p����� y�, we shall compute,
equivalently, the conditional densities

p��j��i	 i �= j	 h� �z� �� y��

p�h�j��h�i�	 i �= j	 �z� �1� � � � � �l� �� y� (j = 1� � � � � l) and p��z��x� �� y�. Following
Geweke and Terui (1993) and Chen and Lee (1995), in a similar problem for SETAR
models, we assume that a priori the parameters among regimes are independent, that
�j and h�j� are also independent, as are �x and �z. These are simplifying assumptions
that allow us to obtain reasonable results. In the case of the assumed independence
of the parameters �j’s, what one is saying is that the dynamic behavior of the
process �Xt� in a regime depends only on the values of �Zt�. Letting some kind
of dependence among the �j’s parameters might involve potential identification
problems. Nevertheless, this is an interesting point for future research.

We take as prior densities for �x the following

�j ∼ N��0�j� V
−1
0�j �

and �h�j��2 ∼ IG��0�j� �0�j� (j = 1� � � � � l), where “IG” stands for inverse Gamma
distribution. Choosing a Gaussian prior for �j is very reasonable because it can
reflect either some precise knowledge about the actual value of this parameter or a
large uncertainty about it, which is explained by a large variance matrix. Even more,
the Bayesian theory about conjugate distributions helps to support this choice.

Under the above considerations, we have the following results.

Proposition 3.3. For each j = 1� � � � � l, let �t 
 jt = j� = �t1�j� � � � � tnj �j�, with nj

denoting the number of observations in regime j. With the above assumptions and prior
distribution specified for �j , its full conditional distribution given �i	 i �= j	 h� �z� �, and
y is multinormal with mean

�∗j = V−1
j ��1/�h�j��2�W′

jXj + V0�j�0�j�� (10)

and variance

Vj = �1/�h�j��2�W′
jWj + V0�j� (11)

where w′
t = �1� xt−1� � � � � xt−kj

�, Wj = �wt1�j
� � � � �wtnj �j

�′, and Xj = �xt1�j � � � � � xtnj �j
�′.

Proof. For each j = 1� � � � � l,

p��j��i	 i �= j	 h� �z� �� y� ∝ L�x��� �� z�p����� z����j�
∝ p����� z����j��

where ��·� is the corresponding prior density. Notice that L����� becomes a product
of degenerate densities that do not depend on the model parameters. Since

p����� z� = p��1��0� �� z�p��2��1� �� z����p��T ��T−1� �� z�
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and each factor in this right-side product is a singular multivariate normal density,
which in turn is concentrated on a non singular univariate density given before in
Subsec. 3.1, we obtain that

p����� z� ∝ exp

[
− 1

2

∑
�t
jt=j�

{
xt − a

�j�
0 −

kj∑
i=1

a
�j�
i xt−i

}2/
�h�j��2

]
�

Now, the sum in the above exponent is equal to the quadratic form

�Xj −Wj�j�
′[�h�j��2Inj

]
�Xj −Wj�j��

Since

���j� ∝ exp
[
− 1

2
��j − �0�j�

′V0�j��j − �0�j�

]
�

we obtain, after some algebraic operations in the exponents, that

p��j��i	 i �= j	 h� �z� �� y� ∝ exp
[
− 1

2
��j − �∗j �

′Vj��j − �∗j �
]
� (12)

where

Vj = �1/�h�j��2�W′
jWj + V0�j

and

�∗j = V−1
j ��1/�h�j��2�W′

jXj + V0�j�0�j��

which corresponds to the kernel of a multivariate normal density with mean �∗j and
variance V−1

j . This completes the proof.

Proposition 3.4. With the same assumptions in Proposition 3.3 and the prior
distribution established previously for �h�j��−2, it is found that its full conditional density
given �j �j = 1� � � � � l�� �z� �, and y, corresponds to that of a Gamma distribution with
shape parameter �0�j + nj/2 and scale parameter

�0�j + �1/2��Yj −Wj�j�
′��Yj −Wj�j��

Proof. Since

p
(
�h�j��−2��−j�h� �� y

) ∝ p����� z����h�j��−2��

where �−j�h denotes the vector � without h�j�, and

���h�j��−2� ∝ 1

�h�j��2��0�j−1�
exp

[− �0�j/�h
�j��2

]
�
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then p��h�j��−2��−j�h� �� y� is directly proportional to the kernel of a Gamma
distribution with shape parameter �0�j + nj/2 and scale parameter

�0�j + �1/2��Yj −Wj�j�
′��Yj −Wj�j��

This ends the proof.

One can see that for the case of SETAR models, similar expressions to (10)–
(11) and to the parameters given by Proposition 3.4 were obtained by Geweke and
Terui (1993) and Chen and Lee (1995), via the so-called arranged autoregression
approach.

In this article, and with simplifying purposes only, we recommend estimating
�z in accordance with the problem at hand and following the lines of the empirical
Bayesian approach. Consequently, this estimation has to be done before the
estimation of the remaining parameters. In this way, one has the set of full
conditional densities for running the Gibbs sampler for both parameter and missing
data estimation in the TAR model. This set is given by p����x� y�, p�z��x� �� x�, and
p��x��� y�, and from the first two, one obtains the marginal densities p�xm��x� xo� zo�
and p�zm��x� xo� zo�.

3.3. Model Adequacy

For model checking, we follow some ideas developed by Tong (1990) and Tong and
Yeung (1991a) in the SETAR models setting. For each t = 1� � � � � T , let êt = �Xt −
Xt�t−1�/h

�j� if Zt ∈ Bj for some j (j = 1� � � � � l), where Xt�t−1 is the one-step-ahead
predictor of Xt. It can be seen that

Xt�t−1 = a
�j�
0 +

kj∑
i=1

a
�j�
i Xt−i�t−1�

where Xt−i�t−1 = Xt−i if at t − i there is an observation for process �Xt� and we
set Xt−i�t−1 = X̂t−i, with X̂t−i the estimator of xt−i, otherwise. Additionally, let Ot =
�i�i = 1� � � � � kj , and t − i � �t1� � � � � tN ��, then

êt =


∑
i∈Ot

a
�j�
i

�Xt−i − X̂t−i�

h�j�
+ �t� if Ot �= �

�t� if Ot = ��

�

with � the empty set. For future reference, the process �êt� is called standardized
pseudo residuals (SPR), and as can be seen, is not necessarily a white noise
process as ��t� is. For now, we propose to use this process in an exploratory way
for checking heteroscedasticity in ��t� and model specification. To this aim, we
recommend using CUSUM and CUSUMSQ charts. Obviously, the distribution of
the usual statistical tests in this crucial case deserves to be investigated in future
research.
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4. Identification of the TAR Model

The results presented in Secs. 2 and 3 were obtained under the assumption that
one knows the model structural parameters. In practice, the first step in the model
analysis consists in identifying these parameters. This is the aim of this section,
where, for the time being, I assume that there are no missing observations in the
time series. In Sec. 5, we shall describe a practical strategy to deal with the missing
data case.

Given the threshold process, the key problems in the context of identifying TAR
models are (1) the determination of the number of regimes and (2) the specification
of the autoregressive orders in each regime. In the literature, these parameters are
almost always assumed to be known. In the line of problem (1), McCulloch and
Tsay (1994) have proposed a procedure that uses the concept of multiple structural
changes for SETAR processes, being flexible, in the authors words, about both the
location and the number of possible thresholds, i.e., without estimating them.

Although in this article we are concerned only with the TAR-model philosophy
described above, it is convenient to say that the TAR model can be cast within
the context of the so-called open-loop dynamical systems, in Tong’s (1990) sense,
or the multivariate threshold models, in Tsay’s (1998) sense, but without covariates
in both cases. In these two settings, we find that the problems quoted above are
addressed basically under empirical considerations and strong use of the Akaike
Information Criterion (AIC) information criterion. Indeed, Tong (1990) proposes to
use a non parametric method to find some relation between the process of interest and
the chosen threshold process and, based on this observation and expertise knowledge,
onemay postulate the number of regimes and threshold locations, these last ones being
reestimated via a conditional least-squares procedure combined with the information
criterion. The information criterion is also used for choosing the autoregressive orders.
Tsay (1998) proposes a building model procedure for identifying a nonlinear model,
which is similar to that developed by himself (Tsay, 1989) for univariate SETAR
models. His approach begins with the use of a nonlinearity test and follows with
the use of the information criterion for adjusting initial entertained values for the
thresholds. As Tong (1990), he chooses autoregressive orders with AIC.

Returning to the TAR modeling scope, one can use the MCMC and Bayesian
approaches for solving the problems (1) and (2) as an alternative to the use of
empirical considerations and the AIC criterion. For the location of the thresholds,
the likelihood-function based philosophy is maintained in a similar way to that used
by Hausman et al. (1992) in a financial time series context. With the MCMC and
Bayesian perspectives, one can set prior distributions on the number of regimes and
the autoregressive orders for each regime and then proceed to obtain the posterior
ones, in order to compute the desired optimal estimates.

4.1. Identification of the Number of Regimes

Following Carlin and Chib (1995) or Green (1995), the problem of identifying
l can be cast as a Bayesian model choice problem via the MCMC approach.
With this wisdom, let L be a discrete random variable from which the number
of regimes l is a realization and, conditional on l, let K1l� � � � � Kll be the discrete
random variables generating the autoregressive orders k1l� � � � � kll. Let us assume
that L takes values on the set �2� 3� · · · � l0�, for a known l0, with a prior
distribution � = ��2� � � � � �l0

� and that the random variables K1l� � � � � Kll take
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values on the respective sets �0� 1� � � � � k̄il� (i = 1� � � � � l), with corresponding prior
distributions qi = �qi0� qi1� � � � � qik̄il � (i = 1� � � � � l). Then, one can say that there are
l0 − 1 candidate models for the data y, which is denoted as Mj (j = 2� � � � � l0), and
that they are parameterized, respectively, by the row vectors

�j = ��x�j� kj� rj��

where kj = �k1j� � � � � kjj�, with kij the autoregressive order of regime i (i = 1� � � � � j)
and rj = �r1j� � � � � rj−1�j�, and rij the ith threshold (i = 1� � � � � j − 1) of model j. �x�j
denotes the vector of nonstructural parameters for model Mj . Notice that we have
not included in this parameter vector the process �Zt� because it is assumed to be
known. In a more compact way, one can set � = ��′2� � � � � �

′
l0
�′ as the matrix of all

the possible parameters in a certain numeric matrix space.
In what follows, one needs to be careful in interpreting two-argument functions

where, for example, the first argument is a parameter � with an interval in the
real line as its parameter space and the second one is a parameter d that can take
discrete values. Then the joint distribution of � and d is represented by the function
p��� d� = f���d�g�d�, where f�·�d� is the conditional density of � given d (which is
assumed to exist) and g�·� is the probability mass function of d.

The interest is on the posterior distribution p�l�y�, which can be obtained
marginally from the joint posterior distribution p�vec�� l�y� (l = 2� � � � � l0). Here,
“vec” denotes the operation of stacking the columns of a matrix into a column
vector. To use the Gibbs sampler for drawing from p�vec�� l�y�, one needs to know
the full conditional distributions p�vec��l� y� and p�l�vec�� y� or, equivalently, the
set of distributions p��j��i	 i �= j	 l� y� (j = 2� � � � � l0) and p�l�vec�� y�. Using Carlin
and Chib (1995) approach, one obtains for TAR models that

p��j��i	 i �= j	 l� y� ∝
{
f�y��l� l�p��l�l� if j = l

p��j�l� if j �= l

and that

p�l�vec�� y� = c−1f�y��l� l�
[ l0∏

j=2

p��j�l�
]
�l� �l = 2� � � � � l0��

with c the normalization constant. The distributions p��j�l�, j �= l, are called the
link distributions and they should be chosen with some care in order to have a
reasonable rate of convergence of the underlying Gibbs sampling (see Carlin and
Chib, 1995 paper for details).

Additionally, one can decompose the full conditional distributions

p��j��i	 i �= j	 l� y�

in the following equivalent set of full distributions: p��x�j��vec��−�x�j�� l� y�,
p�kj��vec��−�k�j�� l� y�, and p�rj��vec��−�r�j�� l� y�, where �vec��−����� denotes the
vector vec� without the subvector indicated in the argument of p and represented
by the symbol “(.,.)”.

The identification of the thresholds will be made via minimization of Tong’s
(1990) NAIC information criterion by means of a search among quantiles of
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the empirical distribution of the data z in a route similar to that of Hausman
et al. (1992). The idea is to postulate a maximum number of regimes l0 and
then to begin a grid search for thresholds in this way: for l = 2, we look for
r1 in the specified quantiles set, for l = 3, one looks for ordered pairs r1 < r2,
and so on. For computing the NAIC information criterion, which encompasses
somehow the conditional likelihood function in expression (6), one needs to know
autoregressive orders, as an intrinsic step. To this end, one can set maximum
orders for corresponding regimes and thus the grid search will take into account,
simultaneously, values of the thresholds and the autoregressive orders. The real data
example ahead will illustrate this strategy.

With the above considerations, the set of full conditional distributions for
running the Gibbs sampler is given by

p��x�j��vec��−�x�j�� l� y� ∝
{
f�y��l� l�p��l�l� if j = l

p��j�l� if j �= l
(13)

p�kj��vec��−�k�j�� l� y� ∝
{
f�y��l� l�p�kl�l� if j = l

p�kj�l� if j �= l �
(14)

and

p�l�vec�� y� = c−1f�x�z� �l� l�
[ l0∏

j=2

p��j�l�
]
�l� �l = 2� � � � � l0�� (15)

with

c =
l0∑

l′=2

f�x�z� �l′ � l′�
[ l0∏

j=2

p��j�l′�
]
�l′ �

The densities given by expression (15) can be computed using the results about
estimation of the non structural parameters of the TAR model presented in Sec 3.

Let

d�i� l� = f�x�z� �l� l�p�kil�l�∑k̄l
k′il=0 f�x�z� �l� l�p�k′il�l�

�

Expression (16) can be decomposed and simplified even more as

p�kij��vec��−�kij �
� l� y� =

{
d�i� l� if j = l

p�kij��l� l� if j �= l�
(16)

where i = 1� � � � � j� kij = 0� 1� � � � � k̄j� k̄j is a prespecified maximum autoregressive
order for all the regimes of model Mj , and p�kij��l� l� is the link probability function
for the autoregressive order Kij . We recommend taking as the link distributions for
the autoregressive orders, the priors qi specified above. Another simplification of
expression (18), consequently of expression (16), can be accomplished if one notes
that

∏T
t=k+1�h

�jt��−1 does not depend on kij . Thus, the likelihood function for the
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x-data in the numerator in expression (18) is reduced to exp�−0�5
∑T

t=k+1 e
2
t �, with

et given in Sec. 3, as also happens within each summand in the denominator. Here,
one can note that if exp�−0�5

∑T
t=k+1 e

2
t � is very large, then there is little likelihood

about kij and this in turn implies large uncertainty about this parameter. This fact
means that practically the uniform distribution for the posterior of Kij is obtained.

One can also reach a simplification of Eq. (17) noting that
∏l0

j=2 p��j�l� does
not depend on l if one sets p��j�l� = p��j�j� (j = 2� � � � � l0), i.e., for j �= l one takes
“false” priors while for j = l one puts the “correct” prior. As I wrote before,
these priors for the vectors �x�j can be chosen as in Sec. 3 and take discrete
distributions on the sets �0� 1� � � � � k̄ij� (i = 1� � � � � j; j = 2� � � � � l0) for Kij , with k̄ij a
specified maximum autoregressive order for regime i of model Mj . In this work, we
recommend setting k̄ij = k̄j (i = 1� � � � � j). Essentially, I have proved the following
result.

Proposition 4.1. The full conditional frequency function for L is given by

p�l�vec�� y� = c−1f�x�z� �l� l��l� �l = 2� � � � � l0�� (17)

with

c =
l0∑

l′=2

f�x�z� �l′ � l′��l′ �

For each l = 2� � � � � l0, let p̂
�i�
l be the value of p�l�vec�� y� at the ith iterate of

the Gibbs sampler. We suggest taking either the mean or the median of the sample
�p̂

�i�
l �i as the final estimate of p�l�vec�� y�, p̂l say, and as the identified number

of regimes, l̂ say, the mode of the distribution �p̂2� � � � � p̂l0
�. Another plausible

alternative is to take as l̂, the mode of the sample �l̂�i��i, where l̂�i� is the simulated
value for L at iteration i. In this stage of the identification procedure, one does
not need to track the draws of the remaining parameters. They are reestimated in
subsequent steps as indicated below.

4.2. Estimation of the Autoregressive Orders

Conditional on l̂, the estimated number of regimes, we now proceed to estimate
k1� � � � � kl̂. For this goal, we take appropriate prior distributions for the random
variables K1� � � � � Kl̂ on the respective sets �0� 1� � � � � k̄1�� � � � � �0� 1� � � � � k̄l̂�. These
distributions can also be taken as the link distributions p�kil̂��l̂� l̂� (i = 1� � � � � l̂) of
expression (18). For short, we shall write in what follows ki in place of kil̂.

The Gibbs sampler for the estimation of the autoregressive orders is obtained
from that for identifying l, i.e., from expressions (15), (18), and (19), just that now I
suppress the full conditional density (19). That is to say, I have the following result.

Proposition 4.2. Let l 
= l̂. The full conditional frequency functions for the
autoregressive orders K1� � � � � Kl are given by

p�ki��vec��−�ki�
� l� y� = f�x�z� �l� l�p�ki�l�/

k̄l∑
k′i=0

f�x�z� �l� l�p�k′i�l��
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where i = 1� � � � � j; ki = 0� 1� � � � � k̄l; k̄l is a prespecified maximum autoregressive order
for all the regimes, and p�ki�l� is a prior frequency function for Ki.

As a particular point, we can take as initial values for k1� � � � � kl̂ in the starting
stage of the sampler, those obtained in the last iteration of the Gibbs sampler
that gave precisely l̂. Another alternative may be to take random draws from the
corresponding prior distributions. The threshold values are those identified for l̂ in
the threshold identification stage at the beginning.

As in the case of identifying l, consider the sequences �p̂
�g�
ki
� for checking

the convergence of the Gibbs sampler, where p̂
�g�
ki

denotes the computed value
for p�ki�l̂� �l̂� y� at the gth iteration. After convergence, take either the mean or
the median of each sequence as the final estimate of the corresponding posterior
probability, say p̂ki

. As k̂i, take the mode of the corresponding posterior distribution
or the most frequent value of Ki in the simulated sample.

In summary, the proposed identification strategy consists of the following steps.

Step 1. Select l0 and then the appropriate thresholds for each l = 2� � � � � l0, via
minimization of the NAIC criterion. Here, intermediate draws of the
nonstructural parameters are generated for all possible combinations of
autoregressive orders.

Step 2. Identify l. Intermediate draws of non structural parameters and
autoregressive orders are used.

Step 3. Conditional on l, identify the orders k1� � � � � kl. Intrinsic draws for the non
structural parameters are needed.

Overall, the proposed identification procedure is similar to that for identifying,
for example, linear ARIMA models via information criteria or to that of George
and McCulloch (1993) in a variable selection context.

5. An Empirical Application

Consider now a real application of the proposed methodology in which the
dynamical system to be considered consists of the diary rainfall (in mm.), as
input variable, and a diary river flow (in m3/s) as the system output, in a certain
Colombian geographical region. The rainfall was measured at the San Rafael
Lagoon’s meteorological station, with an altitude of 3,420 meters and geographical
coordinates 2.23° north (latitude) and 76.23° west (longitude). The flow corresponds
to Bedon river, a small one in hydrological terms, and was measured at the
San Rafael Lagoon’s hydrological station, with an altitude of 3,300 meters and
coordinates 2.19° north and 76.15° west. These stations are located close to the
Earth’s equator and in a very dry geographical zone. This last characteristic permits
to control for hydrological/meteorological factors, which may distort the kind of
dynamical relationship explained by the TAR model. The data set corresponds to
the sample period from January 1, 1992, through November 30, 2000 (3,257 data),
and it was assembled by IDEAM, the official Colombian agency for hydrological
and meteorological studies. In Fig. 1 one can see the two time series, where the
dynamical relationship between the two variables is clear. Additionally, one can see
a certain stable path in both variables although there are bursts of large values. This
fact is a signal of heteroscedasticity, a major characteristic to be taken into account
for explaining the river flow dynamical behavior in terms of precipitation.
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Figure 1. Time series for the real data example: (a) Precipitation; (b) Flow.

Let Pt and Xt be, respectively, the rainfall and the river flow at day t. Because
of the universal convention for measuring these two variables, we needed to put
Zt = Pt−1, that is, translate the precipitation one period back for relating it to the
river flow. Empirical evidence and meteorological expertise suggest considering �Zt�

as a first-order Markov chain with invariant distribution. However, because of the
diary observation frequency of the data, the invariant distribution of �Zt� has no
density function in the Lebesgue-measure sense. The problem is that P�Zt = 0� > 0.
As a reasonable distribution for the process �Zt�, consider the initial distribution
function

F1�z� = pF0�z�+ �1− p�G�z��

where p = Pr�Z = 0�, F0�z� = I�0����z�, I denotes the indicator function, and G�z�

is the distribution function of a normal distribution with mean � and variance �2

truncated at z = 0. For the transition kernel, take the distribution function

F�zt�zt−1� = p�zt−1�F0�zt�+ �1− p�zt−1��G�zt�zt−1��

where p�zt−1� = P�Zt = 0�zt−1� and G�zt�zt−1� is the distribution function of a
normal distribution with mean zt−1 and variance �2 truncated at z = 0. Let g�z�

and g�zt�zt−1� be the corresponding densities for G�z� and G�zt�zt−1�. Also assume
that p�zt−1� = pj if zt−1 lies in regime j (j = 1� � � � � l). As is noted, the initial and
transition kernel distributions are mixture distributions and do not have Lebesgue-
measure densities. Consequently, one cannot use directly the proposed Gibbs
samplers. To use the results obtained in this article, an approximate distribution
for the process �Zt�, was considered which is given by the following arguments.
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For each positive integer n, let

F0n�z� =


0� −� < z < −1/n	

�1/2��sin�nz�+ �/2�+ 1�� −1/n ≤ z ≤ 0	

1� z > 0�

Clearly, F0n is a distribution function and the sequence �F0n� converges pointwise to
F0. On the other hand, F0n is differentiable at all real number z and

F ′
0n�z� =


0� −� < z < −1/n	

�n�/2�cos�nz�+ �/2�� −1/n ≤ z ≤ 0	

0� z > 0�

That is to say, F0n has a density function with respect to the Lebesgue measure on
the real line, given by hn�z� = F ′

0n�z� for all real number z. In this way, for n large
enough take as approximate invariant density

fn�z� = phn�z�+ �1− p�g�z�

and as approximate transition kernel density

fn�zt�zt−1� = p�zt−1�hn�zt�+ �1− p�zt−1��g�zt�zt−1��

Observe here that for drawing from hn�z�, when needed, we will take the value zero
for the drawn sample z and that hn�0� = n�/2. Finally, it is necessary to remark that
some compromise between the size n and computing time should be done because
of low rate of convergence detected in the corresponding Markov chains.

After an initial fit of a TAR model to the data, the model residuals suggested
the need of taking two transformations to the flow time series: (1) square root of the
data and (2) an adjustment for heteroscedasticity. The first one seeks to diminish
the influence of extreme values in the model fitting and the second, to delete certain
characteristics similar to the financial-time-series stylized facts. This correction was
made via the fitting of an ARCH(1) model to the flow data and then correcting them
by the estimated standard-deviation time series. Set Xt = c + �t as the observation
equation in the ARCH model, where c is a constant and ��t� is the model noise
process. Because the two time series have missing data, 52 in �zt� and 32 in �xt�,
firstly, they were estimated in a preliminar way and this was done by means of the
median of the corresponding time series. From now on, the flow data to be analyzed
will be the transformed ones and is denoted as �x̃t�.

With the approach of Sec. 4, the number of regimes l were identified. Observing
the regression function between the time series �x̃t� and �zt�, which was estimated
using a non parametric kernel approach and is presented in Fig. 2, one notes that
approximately the function is conformed by three kinds of behaviors. Here, we are
not necessarily looking for piecewise linearity but for change points that determine
different geometrical forms in the regression function. Hence, one can postulate
that about three regimes would be adequate for the threshold variable Zt. Then, we
proceeded to look for the location of either one threshold r1 (two regimes) or two
thresholds r1 < r2 (three regimes), as indicated in Sec. 4. The chosen quantiles were
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Figure 2. Estimated regression function for precipitation and flow.

the percentiles 1, 5, 10, 25, 50, 75, 90, 95, and 99 with respective values 1.0, 1.0,
1.1, 3.0, 6.0, 10.3, 17.18, 23.0, and 38.0. The results of this search are presented in
Table 1. With these possible thresholds sets, the posterior probability function for
the number of regimes was computed, finding that p̂2 = 0�52 and p̂3 = 0�48; thus,
set l̂ = 2, although there is not a clear discrimination between the two number of
regimes. To check the convergence of the underlying Gibbs sampler, the behavior
of the sequences �p̂

�i�
l � was tracked (l = 2� 3) looking for stationarity. I found that

for 3000 iterates, the sample autocorrelations functions decay quickly and that the
burn-in point is about 10% of the draws.

Conditional on l̂ = 2, The estimation of the autoregressive orders k1 and k2
began finding that k̂1 = k̂2 = 1, as can be deduced from Table 2. The maximum
possible autoregressive order 2 was chosen fitting linear AR models and using
the AIC information criterion. As in the case of identifying l, the convergence
of the Gibbs samplers was checked via the stationarity approach and found that

Table 1
Set of possible number of regimes for the real data

l Thresholds Autoregressive orders Minimum NAIC

2 6.0 2, 2 4.51
3 6.0, 10.3 2, 2, 1 4.44
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Table 2
Posterior probabilities for the AR orders

in the real example

Regime

Order 1 2

0 0.31 0.25
1 0.38 0.50
2 0.31 0.25

500 iterates were appropriate, with a very small burn in period of about 1% of
the iterates. This concludes the identification stage of the TAR model, taking into
account that the identified threshold is r1 = 6�0, the median of the precipitation data.

With the structural parameters identified above, the missing data in the
two time series was estimated jointly and the remaining TAR model parameters
using the approximate invariant density function fn�z� with n = 1000. To estimate
p, was counted the number of zeroes in the sample for the rainfall and
computed its relative frequency of occurrence (frequency substitution principle,
Bickel and Doksum, 1977) finding p̂ = 0�26. With the same idea, for estimating the
parameters pj (j = 1� 2), the number of pairs �zt−1� 0� with zt−1 in the regime j
and the number of total pairs �zt−1� 0� in the sample were counted and found that
p̂1 = 0�87 and p̂2 = 0�13. The estimated parameters for the truncated normal density
g were �̂ = 3�24 and �̂ = 7�76, where we have made use of the following facts:
the truncated distribution attains (1) its mode at the same value as the normal
distribution, i.e., at its mean �, and (2) its inflexion point at � + �, as the normal
density does. Hence, the density of the truncated distribution was estimated using
the non parametric kernel approach, and then its mode and inflexion point were
computed. As can be noted, these parameter estimates might be accomplished using
MCMC methodology, but this route is not considered now.

To generate from the posterior joint density p�z�x� ��, and from these samples to
extract draws for the missing data in z, one needs to generate from p�zt�zt+1� �t� xt�
(t = T − 1� T − 2� � � � � 1) as indicated in Sec. 3. This is an intrinsic step of the
Gibbs sampler for estimating both the non structural parameters and the missing
observations. For this empirical application, the Metropolis-Hastings algorithm
was used with a so-called instrumental density given by phn�zt�+ �1− p�u�0�mz�

�zt�,
with n = 1000, where the density in the second term is that of the uniform
distribution on the interval �0�mz�, with mz the maximum of the time series �zt�.
For automatically checking the stationarity condition of the inner draws, a non
parametric Kolmogorov test was used (Robert and Casella, 1999).

Finally, the initial missing data estimates were replaced with the new ones and
repeat the above identifying procedure, finding the same values for the number
of regimes, the threshold value, and the autoregressive orders. Consequently, the
identified TAR model for these two stochastic processes is given by the structural
parameters l̂ = 2, and k̂1 = k̂2 = 1.

The final estimates for the non structural parameters are presented in Table 3
and some of the missing data estimates in Table 4, where at time t = 2012 a negative
value was obtained for the lower extreme of the credible interval. This suggests that
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Table 3
Parameter estimates for the real data TAR model

Regime j

Parameter 1 2

a
�j�
0 1.32 [1.23,1.43] 1.98 [1.79,2.18]

(0.06) (0.12)
a
�j�
1 0.59 [0.57,0.62] 0.58 [0.53,0.61]

(0.01) (0.03)
h�j� 1.35 2.28

Standard errors in parenthesis and 90% credible
intervals in brackets.

in an eventual refinement of this real data application, a transformation other than
the one used here should be considered for the flow data. The explicit TAR model
is then given by

X̃t =
{
1�32+ 0�59X̃t−1 + 1�35�t� Zt < 6�0

1�98+ 0�58X̃t−1 + 2�28�t� Zt ≥ 6�0�

and an interpretation of it is the following: first of all, only two regimes for the
rainfall variable are detected, which could be termed as low and high precipitation
regimes. Looking at each regime separately, one founds that the stationarity
condition for linear AR(1) processes is fulfilled and that the mean values for the
transformed flow are 3.22 for the first regime and 4.71 for the second. That is
to say, the more the precipitation, the more the transformed flow river (as one
would expect). Also, one can see that the noise variance in the first regime is
less than the noise variance in the second regime, indicating that the more the

Table 4
Some missing data estimates for the real example

t ẑt 90% CI∗ t ˆ̃xt 90% CI

792 7�85 [2.95, 11.36] 1659 4�92 [1.18, 8.74]
3199 3�69 [0.00, 9.79] 1668 3�79 [1.12, 6.64]
3205 8�06 [2.53, 11.88] 2012 4�29 [−0�16� 9�22]
3210 4�78 [0.00, 10.00] 2017 4�47 [0.24, 8.82]
3215 4�82 [0.00, 10.07] 2022 8�02 [3.94, 12.50]
3223 4�02 [0.00, 10.18] 2326 3�88 [0.72, 6.96]
3227 3�24 [0.00, 8.59]
3237 4�01 [0.00, 9.95]
3243 4�33 [0.00, 10.09]
3248 4�44 [0.00, 10.34]
3255 6�98 [0.00, 11.28]

∗CI: credible interval.
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Figure 3. CUSUM and CUSUMSQ charts, (a) and (b) respectively, for the residuals in the
empirical example.

rainfall, the more the transformed flow variability. This means that in the flow data
transformed initially there is even heteroscedasticity but that it is explained by the
rainfall regimes. As can also be observed, the weight of X̃t−1 in the value of X̃t is
practically the same in both regimes, which means that the dynamic response of the
transformed flow data to the influence of its values a day before is not affected by
the rainfall regimes.

Concerning the residuals performance, the CUSUMs charts were found to
behave well as can be observed at Fig. 3, where the confidence for the bands are
95% for the CUSUM and 99% for the CUSUMSQ. This indicates that there is no
evidence for model misspecification or heteroscedasticity in �X̃t�.

6. Conclusions

In this article, a methodology was presented for analyzing bivariate time series
with missing data. It was assumed that there is a dynamical nonlinear relationship
between the two time series that can be explained by a threshold autoregressive
(TAR) model. Some model theoretical properties were found whose implications are
useful for its specification in practice.

The time series analysis is based on the identification and estimation stages of
the TAR model in the presence of missing data. The model parameters and missing
data estimates are addressed jointly and some guidelines are sketched for diagnostic
checking. The TAR model analysis is accomplished by means of the MCMC and
Bayesian approaches, although some parts of the analysis are developed using
empirical Bayes methods. Obviously, the proposed procedure covers the case of
complete time series, deleting from the set of full conditional densities those
corresponding to the missing data. The forecasting phase of the conventional time
series analysis is not considered in this work.
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Aside from the use of the MCMC/Bayesian scope, the model and results can
be seen as an intermediate approach between the univariate SETAR model and the
multivariate threshold model methodologies of Tong (1990) and Tsay (1998).
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